Humaira Yasmin, Noufe H. Aljahdaly, Abdulkafi Mohammed Saeed, Rasool Shah

Probing Families of Optical Soliton Solutions in Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model with Improved Versions of Extended Direct Algebraic Method

  • Statistics and Probability
  • Statistical and Nonlinear Physics
  • Analysis

In this investigation, we utilize advanced versions of the Extended Direct Algebraic Method (EDAM), namely the modified EDAM (mEDAM) and r+ mEDAM, to explore families of optical soliton solutions in the Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model (FPRKLM). Our study stands out due to its in-depth investigation and the identification of multiple localized and stable soliton families, illuminating their complex behavior. We offer visual validation via carefully designed 3D graphics that capture the complex behaviors of these solitons. The implications of our research extend to fiber optics, communication systems, and nonlinear optics, with the potential for driving developments in optical devices and information processing technologies. This study conveys an important contribution to the field of nonlinear optics, paving the way for future advancements and a greater comprehension of optical solitons and their applications.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive