Julio Cantero-Durango, Rodrigo Polo-Mendoza, Gilberto Martinez-Arguelles, Luis Fuentes

Properties of Hot Mix Asphalt (HMA) with Several Contents of Recycled Concrete Aggregate (RCA)

  • Computer Science Applications
  • Geotechnical Engineering and Engineering Geology
  • General Materials Science
  • Building and Construction
  • Civil and Structural Engineering

Continuous research efforts have been developed in the literature to raise the sustainability components of the road infrastructure industry, i.e., reduce potential contaminants and augment financial profitability. In this regard, this investigation aims to explore the feasibility of producing Hot Mix Asphalt (HMA) with the inclusion of Recycled Concrete Aggregate (RCA) as a partial substitute for coarse Natural Aggregates (NAs). Thus, four different HMAs were considered, namely HMAs with coarse RCA contents of 0, 15, 30, and 45%. Specifically, the mechanical and sustainability properties of the asphalt mixtures were determined. On the one hand, the Marshall design parameters, resilient modulus, moisture susceptibility, rutting resistance, and fatigue life were addressed as mechanical properties. Meanwhile, regarding the sustainability properties, the environmental impacts and production costs were estimated using the Life Cycle Assessment (LCA) and the Life Cycle Cost Analysis (LCCA) methodologies, respectively. Consequently, the following conclusions were obtained: (i) as the coarse RCA content increases, the mechanical behavior of the HMA progressively deteriorates; (ii) this decrease in mechanical performance is acceptable up to a 15% RCA of coarse RCA, whereas for higher dosages this alteration is abrupt; and (iii) the RCA only generates sustainability benefits at a 15% replacement amount.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive