DOI: 10.3390/membranes14040092 ISSN: 2077-0375

Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole

Anna Nowik-Zajac, Iwona Zawierucha, Jakub Lagiewka, Karolina Jaksender, Katarzyna Witt, Grzegorz Malina, Vira Sabadash
  • Filtration and Separation
  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology

The effective purification of aqueous solutions of methylene blue dye was tested using polymer inclusion membranes (PIMs) that contained cellulose triacetate (CTA) as a polymer base, o-nitrophenyl octyl ether (o-NPOE) as a plasticizer, and meso-tetra methyl tetrakis-[methyl-2-(4-acetlphenoxy)] calix[4]pyrrole (KP) as a carrier. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to define the microstructure and surface of PIMs. Experimental results showed that, with an increased concentration of methylene blue in an aqueous solution, the removal percentage also increased. Further observation showed that the flux increased with the rise in the source phase pH values from 3 to 10. The carrier and plasticizer content in the membrane significantly influenced the membrane’s transport properties. The optimal composition of the membrane in percent by weight for KP was 74% plasticizer; 18% support, and 8% carrier. The maximum MB removal (93.10%) was achieved at 0.10 M HCl solution as the receiving phase. It was shown that the membrane with optimal composition showed good reusability and enabled the easy and spontaneous separation of methylene blue from aqueous solutions.

More from our Archive