DOI: 10.3390/app15073909 ISSN: 2076-3417

Research on Active Anti-Slip Control of High-Speed Trains Based on High-Order Sliding Mode

Song Wang, Buzou Zhang, Yixuan Wang, Shuai Cao

This paper addresses the issue of wheelset slip in trains caused by low-adhesion track surfaces and proposes an active anti-slip tracking control strategy. Considering the wide operational range of trains and the complex adhesion conditions between wheels and rails, a comprehensive model of the train, incorporating adhesion effects, is developed and then transformed into a mathematical model with perturbations. To tackle the slip phenomenon on low-adhesion track surfaces, a robust adhesion observer with high dynamic accuracy is designed. Building on this, an active anti-slip strategy is proposed to ensure that the control command does not exceed the maximum traction force available from the track surface. To further enhance controller performance, higher-order sliding mode control is integrated with a saturation compensation law. Finally, a Hardware-in-the-Loop (HIL) platform is constructed using a Digital Signal Processor (DSP) controller and a Modular Test (MT) PXI real-time simulator. The simulator loads the adhesion model, while the DSP controller executes the designed anti-slip control algorithm. Experimental results demonstrate that the proposed controller effectively prevents wheelset slip under low-adhesion conditions and significantly reduces tracking errors along the target speed-displacement curve.

More from our Archive