Research on Intelligentization of Cloud Computing Programs Based on Self-awareness
Hanpeng Liu, Wuqi Gao, Junmin Luo- General Earth and Planetary Sciences
- General Environmental Science
Abstract
Through the research of MapReduce programming framework of cloud computing, the current MapReduce program only solves specific problems, and there is no design experience or design feature summary of MapReduce program, let alone formal description and experience inheritance and application of knowledge base. In order to solve the problem of intelligent cloud computing program, a general MapReduce program generation method is designed. This paper proposes the architecture of intelligent cloud computing by studying AORBCO model and combining cloud computing technology. According to the behavior control mechanism in AORBCO model, a program generation method of MapReduce in intelligent cloud computing is proposed. This method will extract entity information in input data set and entity information in knowledge base in intelligent cloud computing for similarity calculation, and extract the entity in the top order as key key-value pair information in intelligent cloud computing judgment data set. The data processing types are divided, and then aligned with each specific MapReduce capability, and the MapReduce program generation experiment is verified in the AORBCO model development platform. The experiment shows that the complexity of big data MapReduce program code is simplified, and the generated code execution efficiency is good.