Research Progress on Biological Denitrification Process in Wastewater Treatment
Yuling Ye, Keyuan Zhang, Xiantao Peng, Qiang Zhou, Zhicheng Pan, Bo Xing, Xiaonan LiuNitrogen removal in the sewage treatment process is a significant challenge. The increase in nitrogen content in sewage leads to the eutrophication of water bodies and the deterioration of water quality in polluted environments. Therefore, converting nitrogen into non-polluting gases is a crucial and essential part of the sewage treatment process. Compared to physical, chemical, and physicochemical methods, biological denitrification is not only simple to operate and economically effective but also has less secondary pollution and saves energy. This paper summarizes the latest research progress on mainstream biological denitrification technology in WWTPS (wastewater treatment plants) and discusses its research background, methodology, and challenges. It is noted that the traditional biological nitrogen removal method is stable and widely used, but it has drawbacks such as high costs and long reaction times, especially in high-nitrogen-load wastewater treatment where its effectiveness is limited. The short-cut nitrification–denitrification process suits high-nitrogen-loading and a low C/N ratio wastewater as it reduces carbon source consumption. However, the problems of water quality fluctuation and unstable dissolved oxygen still need to be solved. The anaerobic ammonia oxidation process efficiently converts ammonia and nitrite to nitrogen using anaerobic ammonia-oxidizing bacteria, consuming less energy but facing limitations due to slow bacterial growth rates and stringent environmental conditions. The heterotrophic nitrification–aerobic denitrification process merges the traits of heterotrophic nitrifying bacteria and aerobic denitrifying bacteria, effectively reducing the ecological footprint and enhancing treatment efficiency. This approach is a pivotal focus for future research endeavors.