Response of the Desertification Landscape Patterns to Spatial–Temporal Changes of Land Use: A Case Study of Salaxi in South China Karst
Tian Shu, Kangning Xiong, Ning Zhang- Nature and Landscape Conservation
- Ecology
- Global and Planetary Change
Land use change and karst desertification (KD) are interdependent. It is crucial to investigate the relationship between the KD landscape and spatial–temporal changes in land use for effective and sustainable KD management practices in karst plateau mountains. In this study, we analyzed the spatial and temporal characteristics, evolution in the pattern of land use, and KD in the Salaxi study area from 2009 to 2019, using the landscape pattern index and KD evolution trajectories, and discussed their response relationships. The results revealed the following: (1) In Salaxi, cultivated land predominantly transformed into shrubland, grassland, and woodland. The area of grassland, construction land, and garden land significantly increased, with respective increments of 379.85%, 157.14%, and 1847.81%. Conversely, the area of unutilized land decreased from 53.56 hm2 to 8.55 hm2, with the proportion declining from 0.62% to 0.10%. KD primarily occurs in shrubland, cultivated land, and woodland. (2) The areas of non-KD and potential KD have increased. There was a noticeable conversion of light and medium KD into potential KD, with areas of 1206.84 hm2 and 459.47 hm2, respectively. The KD landscape is dominated by stable and weakening ecological restoration. The comprehensive ranking of the incidence of soil KD in the study area is as follows: yellow soil > yellow-brown soil > coarse bone soil > limestone soil > purple soil. (3) The land use landscape index, the evenness index, and the fragmentation index in the demonstration area increased by 0.263, 0.120, and 0.534, respectively, while the KD landscape index, evenness index, and fragmentation index decreased by 0.360, 0.123, and 1.098, respectively. Additionally, the spreading index and aggregation index of the land use landscape decreased by 9.247 and 3.086, respectively, while the KD landscape’s spreading index and aggregation index increased by 6.688 and 0.430, respectively. Both the sub-dimension indexes of the land use landscape and the KD landscape increased by 0.009. Overall, the landscape pattern of KD changes in response to land use variations and different land types exhibited varying responses to KD. The study of KD and land use landscape patterns can provide references for national strategies on KD control and the development of ecological industries.