Self-Crosslinking Waterborne Acrylate Modified Emulsified Asphalt via DAAM-ADH: A Dual-Enhanced Solution for Pavement Performance
Jianhui Xu, Zhaoyi He, Haiying Li, Shutong Tang, Jie Wang, Jing Dang, Yuanyuan LiEmulsified asphalt is widely used for pavement maintenance due to its ease of application. However, its use is limited by poor high-temperature stability and low bonding strength. This study attempted to prepare a self-crosslinking waterborne acrylate (SWA)-type admixture using a diacetone acrylamide (DAAM)-adipic dihydrazide (ADH) crosslinking system and applied it to emulsified asphalt to ultimately obtain self-crosslinking waterborne acrylate-modified emulsified asphalt (AMEA). The research explored the effects of SWA on the fundamental properties, rheological characteristics, microscopic morphology, and bonding performance of AMEA. Results indicated that SWA undergoes self-crosslinking reactions during the demulsification process, forming a continuous and stable network structure that significantly enhances the strength of emulsified asphalt while improving softening point and high-temperature stability. Rheological analysis revealed that within the 10–15 phr dosage range, the influence of frequency on emulsified asphalt was minimized, with notable improvements in high-temperature elastic recovery and deformation resistance. Particularly when the dosage exceeds 10 phr, the material demonstrates adaptability to high-traffic environments. Pull-off tests demonstrated that SWA can increase the interlayer bonding strength of emulsified asphalt by over 50%. However, SWA exhibits some negative impact on the low-temperature ductility of emulsified asphalt, necessitating cautious dosage control during application. This novel self-crosslinking waterborne acrylate-modified emulsified asphalt, with its excellent bonding performance and superior high-temperature stability, emerges as a crucial material choice for pavement preventive maintenance.