DOI: 10.3390/photonics11040380 ISSN: 2304-6732

Sensitive Detection of Silicon in Aqua Phase by Microwave-Assisted Laser-Induced Breakdown Spectroscopy

Ali M. Alamri, Zeyad T. Alwahabi
  • Radiology, Nuclear Medicine and imaging
  • Instrumentation
  • Atomic and Molecular Physics, and Optics

Microwave-assisted laser-induced breakdown spectroscopy (MA-LIBS) was demonstrated to be an effective method for the quantitative detection of silicon in the aqua phase. Microwave radiation was transmitted into plasma using a near-field applicator device under ambient pressure and temperature conditions. Silicon detection was performed directly on the surface of a water jet. Two Si emission lines, 251.6 nm and 288.16 nm, were selected to evaluate the MA-LIBS enhancement and determine the limit of detection for silicon. The signal-to-noise ratio of the MA-LIBS spectra was investigated as a function of laser energy and microwave power. The calibration curve was established for Si quantitative analysis using 8 mJ of laser energy and 900 W of microwave power. The MA-LIBS recorded a 51-fold and 77-fold enhancement for Si I 251.6 nm and 288.16 nm, respectively. Reducing liquid splashes after laser ablation is essential to improving the quantitative analysis. Using MA-LIBS reduced the liquid splashes due to MA-LIBS using 8 mJ. The detection limit achieved was 1.25, a 16-fold improvement over traditional LIBS.

More from our Archive