DOI: 10.1002/adfm.202316691 ISSN: 1616-301X

Shape Anisotropic Chain‐Like CoNi/Polydimethylsiloxane Composite Films with Excellent Low‐Frequency Microwave Absorption and High Thermal Conductivity

Mukun He, Jinwen Hu, Han Yan, Xiao Zhong, Yali Zhang, Panbo Liu, Jie Kong, Junwei Gu
  • Electrochemistry
  • Condensed Matter Physics
  • Biomaterials
  • Electronic, Optical and Magnetic Materials

Abstract

The demand for low‐frequency microwave absorption materials is becoming more and more urgent. Novel shape anisotropy chain‐like CoNi is fabricated using polyvinylpyrrolidone as a shape‐directing agent via solvothermal method, which is then mixed with polydimethylsiloxane (PDMS) to prepare corresponding multifunctional chain‐like CoNi/PDMS composite films. Shape anisotropy and strong magnetic coupling effect of chain‐like CoNi enhance natural resonance and magnetic loss capability. The minimum reflection loss (RLmin) is −50.5 dB and low‐frequency effective absorption bandwidth (EAB) is 1.04 GHz (2.64–3.68 GHz) at 3.9 mm for chain‐like CoNi. The corresponding 18 vol% chain‐like CoNi/PDMS composite films present optimal low‐frequency microwave absorption performance with RLmin of −56.7 dB and low‐frequency EAB of 1.04 GHz (2.96–4.00 GHz) at 4.1 mm, which is far superior to 18 vol% spherical CoNi/PDMS composite films with RLmin of −9.5 dB. Meantime, the in‐plane and inter‐plane thermal conductivity coefficients of 18 vol% chain‐like CoNi/PDMS composite films are 2.05 and 0.61 W m−1 K−1, about 1.5 times higher than 18 vol% spherical CoNi/PDMS composite films (1.36 and 0.42 W m−1 K−1), also 220% and 190% higher than pure PDMS (0.64 and 0.21 W m−1 K−1). This composite films with low‐frequency microwave absorption and thermal conductivity can broaden applications in 5G communications and flexible electronics.

More from our Archive