DOI: 10.3390/drones7120707 ISSN: 2504-446X

SiamMAN: Siamese Multi-Phase Aware Network for Real-Time Unmanned Aerial Vehicle Tracking

Faxue Liu, Xuan Wang, Qiqi Chen, Jinghong Liu, Chenglong Liu
  • Artificial Intelligence
  • Computer Science Applications
  • Aerospace Engineering
  • Information Systems
  • Control and Systems Engineering

In this paper, we address aerial tracking tasks by designing multi-phase aware networks to obtain rich long-range dependencies. For aerial tracking tasks, the existing methods are prone to tracking drift in scenarios with high demand for multi-layer long-range feature dependencies such as viewpoint change caused by the characteristics of the UAV shooting perspective, low resolution, etc. In contrast to the previous works that only used multi-scale feature fusion to obtain contextual information, we designed a new architecture to adapt the characteristics of different levels of features in challenging scenarios to adaptively integrate regional features and the corresponding global dependencies information. Specifically, for the proposed tracker (SiamMAN), we first propose a two-stage aware neck (TAN), where first a cascaded splitting encoder (CSE) is used to obtain the distributed long-range relevance among the sub-branches by the splitting of feature channels, and then a multi-level contextual decoder (MCD) is used to achieve further global dependency fusion. Finally, we design the response map context encoder (RCE) utilizing long-range contextual information in backpropagation to accomplish pixel-level updating for the deeper features and better balance the semantic and spatial information. Several experiments on well-known tracking benchmarks illustrate that the proposed method outperforms SOTA trackers, which results from the effective utilization of the proposed multi-phase aware network for different levels of features.