DOI: 10.1515/nanoph-2024-0062 ISSN: 2192-8606

Silicon-based planar devices for narrow-band near-infrared photodetection using Tamm plasmons

Wenyue Liang, Yajin Dong, Long Wen, Yongbing Long
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biotechnology

Abstract

Designing efficient narrow-band near-infrared photodetectors integrated on silicon for telecommunications remains a significant challenge in silicon photonics. This paper proposes a novel silicon-based hot-electron photodetector employing Tamm plasmons (Si-based TP-HE PD) for narrow-band near-infrared photodetection. The device combines a one-dimensional photonic crystal (1DPC) structure, an Au layer, and a silicon substrate with a back electrode. Simulation results show that the absorption of the TP device with a back electrode is 1.5 times higher than without a back electrode, due to increased absorption from multiple reflections between the back electrode and the 1DPC structure. Experimentally, the responsivity of the fabricated device reaches 0.195 mA/W at a wavelength of 1400 nm. A phenomenological model was developed to analyze the photoelectric conversion mechanism, revealing reasonable agreement between the theoretically calculated and experimentally measured internal quantum efficiencies. Additional experiments and simulations demonstrate the tunability of the resonance wavelength from 1200 nm to 1700 nm by adjusting structural parameters. The Si-based TP-HE PD shows potential for silicon-based optoelectronic applications, offering the advantages of a simple structure, low cost, and compatibility with silicon photonic integrated circuits. This work represents the first demonstration of a silicon-based hot electron NIR photodetector utilizing Tamm plasmons.

More from our Archive