DOI: 10.3390/bios13090865 ISSN:

Simultaneous Detection of SARS-CoV-2 Nucleoprotein and Receptor Binding Domain by a Multi-Area Reflectance Spectroscopy Sensor

Dimitra Tsounidi, Michailia Angelopoulou, Panagiota Petrou, Ioannis Raptis, Sotirios Kakabakos
  • Clinical Biochemistry
  • General Medicine
  • Analytical Chemistry
  • Biotechnology
  • Instrumentation
  • Biomedical Engineering
  • Engineering (miscellaneous)

The COVID-19 pandemic has emphasized the urgent need for point-of-care methods suitable for the rapid and reliable diagnosis of viral infections. To address this demand, we report the rapid, label-free simultaneous determination of two SARS-CoV-2 proteins, namely, the nucleoprotein and the receptor binding domain peptide of S1 protein, by implementing a bioanalytical device based on Multi Area Reflectance Spectroscopy. Simultaneous detection of these two proteins is achieved by using silicon chips with adjacent areas of different silicon dioxide thickness on top, each of which is modified with an antibody specific to either the nucleoprotein or the receptor binding domain of SARS-CoV-2. Both areas were illuminated by a single probe that also collected the reflected light, directing it to a spectrometer. The online conversion of the combined reflection spectra from the two silicon dioxide areas into the respective adlayer thickness enabled real-time monitoring of immunoreactions taking place on the two areas. Several antibodies have been tested to define the pair, providing the higher specific signal following a non-competitive immunoassay format. Biotinylated secondary antibodies and streptavidin were used to enhance the specific signal. Both proteins were detected in less than 12 min, with detection limits of 1.0 ng/mL. The assays demonstrated high repeatability with intra- and inter-assay coefficients of variation lower than 10%. Moreover, the recovery of both proteins from spiked samples prepared in extraction buffer from a commercial self-test kit for SARS-CoV-2 collection from nasopharyngeal swabs ranged from 90.0 to 110%. The short assay duration in combination with the excellent analytical performance and the compact instrument size render the proposed device and assay suitable for point-of-care applications.

More from our Archive