Single-Cell Profiling Reveals Immune-Based Mechanisms Underlying Tumor Radiosensitization by a Novel Mn Porphyrin Clinical Candidate, MnTnBuOE-2-PyP5+ (BMX-001)
Sun Up Noh, Jinyeong Lim, Sung-Won Shin, Yeeun Kim, Woong-Yang Park, Ines Batinic-Haberle, Changhoon Choi, Won Park- Cell Biology
- Clinical Biochemistry
- Molecular Biology
- Biochemistry
- Physiology
Manganese porphyrins reportedly exhibit synergic effects when combined with irradiation. However, an in-depth understanding of intratumoral heterogeneity and immune pathways, as affected by Mn porphyrins, remains limited. Here, we explored the mechanisms underlying immunomodulation of a clinical candidate, MnTnBuOE-2-PyP5+ (BMX-001, MnBuOE), using single-cell analysis in a murine carcinoma model. Mice bearing 4T1 tumors were divided into four groups: control, MnBuOE, radiotherapy (RT), and combined MnBuOE and radiotherapy (MnBuOE/RT). In epithelial cells, the epithelial–mesenchymal transition, TNF-α signaling via NF-кB, angiogenesis, and hypoxia-related genes were significantly downregulated in the MnBuOE/RT group compared with the RT group. All subtypes of cancer-associated fibroblasts (CAFs) were clearly reduced in MnBuOE and MnBuOE/RT. Inhibitory receptor–ligand interactions, in which epithelial cells and CAFs interacted with CD8+ T cells, were significantly lower in the MnBuOE/RT group than in the RT group. Trajectory analysis showed that dendritic cells maturation-associated markers were increased in MnBuOE/RT. M1 macrophages were significantly increased in the MnBuOE/RT group compared with the RT group, whereas myeloid-derived suppressor cells were decreased. CellChat analysis showed that the number of cell–cell communications was the lowest in the MnBuOE/RT group. Our study is the first to provide evidence for the combined radiotherapy with a novel Mn porphyrin clinical candidate, BMX-001, from the perspective of each cell type within the tumor microenvironment.