Jian Zhou, Yage Di, Xuelong Miao

Single-Wheel Failure Stability Control for Vehicle Equipped with Brake-by-Wire System

  • Automotive Engineering

In order to solve the problem of vehicle stability control after a single-wheel brake failure in the brake-by-wire system, a control strategy of braking force redistribution with a yaw moment is proposed to ensure the braking efficiency and stability of vehicles. In this strategy, a two-layer architecture is adopted. In the upper layer control, a fault factor is introduced to represent the real-time failure degree of the wheel, and the driver’s braking intention is perceived through the pedal travel and pedal speed of the driver. The braking force redistribution algorithm of the remaining three wheels is designed based on the wheel failure degree and braking intensity. In the lower control, according to the state parameters of the vehicle, the additional yaw moment, which controls the yaw rate and the sideslip angle of the vehicle, is calculated by using the sliding mode control theory, and the yaw moment is reasonably allocated to the normal wheel. By using MATLAB/Simulink and Carsim co-simulation, different braking strength and failure types are selected for simulation analysis. The simulation results show that the proposed control strategy can improve the braking efficiency and stability of the vehicle under different braking conditions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive