DOI: 10.3390/atmos15040494 ISSN: 2073-4433

Some Early Studies of Isotropic Turbulence: A Review

John Z. Shi
  • Atmospheric Science
  • Environmental Science (miscellaneous)

A re-examination of some early classic turbulence literature, mainly of isotropic turbulence, is given in this selective review. Some early studies, including original concepts and points, are reviewed or highlighted. Two earliest studies and six major original concepts are found: (i) Lord Kelvin’s pioneering elementary studies of homogeneous, isotropic turbulence; (ii) Kelvin’s early introduction of Fourier Principles into turbulence studies; (iii) the Kelvin elementary concept of the direct energy cascade; (iv) the Kelvin early concept of the symmetry of turbulence; (v) the Taylor concept of the coefficient of eddy viscosity; (vi) the Taylor concept of the ‘age’ of the eddy; (vii) the Taylor–Fage–Townend concept of small eddies or microturbulence or small scale turbulence; and (viii) the Obukhov concept of a function of the inner Reynolds number (i.e., dependent coefficient) in both the balance equation and the energy distribution equation (the two-thirds law). Both Kelvin and Taylor should be regarded as the co-founders of the statistical theory of homogeneous, isotropic turbulence. The notion, ‘the Maxwell–Reynolds decomposition of turbulent flow velocity’, should be used. The Kolmogorov–Obukhov scaling laws are reviewed in detail. Heisenberg’s inverse seventh power spectrum is briefly reviewed. The implications or significances of these early studies, original concepts and points are briefly discussed, with special reference to their possible links with modern approaches and theories.

More from our Archive