- Geochemistry and Petrology
- Geophysics
Abstract
Various site-response estimates are presented for a linear array deployed in the Coachella Valley, California, during the 1992 Landers/Big Bear aftershock sequence. This systematic comparison is unique in that the response of the site is clearly dominated by basin-edge-induced waves. Average sediment to bedrock spectral ratios for long S-wave windows, which include the basin-edge-induced waves, exhibit amplification factors as high as ∼ 18, below 7 Hz. The deep basin structure, which gives rise to the obvious multi-dimensional effects, produces a fundamental resonant peak that shifts between basin sites (from 0.23 to 0.48 Hz) as the depth to bedrock changes. Above 0.6 Hz, where the largest amplifications occur, the response is remarkably similar between sites and appears to be dominated by a near-surface layer that is relatively uniform across the valley. The apparent fundamental resonant frequency of this layer is between 0.8 and 1 Hz. Sediment to bedrock spectral ratios computed using shorter windows that exclude the basin-edge-induced waves imply that the multi-dimensional effects are significant only below ∼ 4 Hz, where they increase amplifications by an approximate factor of 2. Spectral ratios computed using coda windows, taken at twice the S-wave travel time, exhibit amplifications that are an average factor of 1.7 greater, between 1 and 4 Hz, than those of the S-wave estimates. This discrepancy does not improve by taking coda windows later at four times the S-wave travel time. Horizontal- to vertical-component S-wave spectral ratios do not agree with the sediment to bedrock ratios. However, they do exhibit a clear peak at the fundamental resonant frequency of the deep basin structure. Sediment to bedrock spectral ratios of ambient seismic noise are also inconsistent with the S-wave estimates. However, horizontal to vertical noise ratios exhibit clear peaks near the fundamental resonant frequencies of both the deep basin structure (below 0.6 Hz) and the suspected near-surface layer (between 0.8 and 1 Hz). Therefore, ambient-noise data appear to provide valuable constraints on the basin structure. Ongoing efforts involve multi-dimensional modeling of the observed basin-edge-induced phases and resonant frequencies.
Need a simple solution for managing your BibTeX entries? Explore CiteDrive!
- Web-based, modern reference management
- Collaborate and share with fellow researchers
- Integration with Overleaf
- Comprehensive BibTeX/BibLaTeX support
- Save articles and websites directly from your browser
- Search for new articles from a database of tens of millions of references
Try out CiteDrive More from our Archive
-
DOI: 10.1785/bssa0860041091 2023
Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences
Robert W. Graves
-
DOI: 10.1785/bssa0860051238 2023
Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967
Aykut Barka
-
DOI: 10.1785/bssa0860061964 2023
Nonlinear soil response—A reality?
Igor A. Beresnev, Kuo-Liang Wen
-
DOI: 10.1785/bssa0860040991 2023
Spectral amplification in a sediment-filled Valley exhibiting clear basin-edge-induced waves
Edward H. Field
-
DOI: 10.1785/bssa0860061749 2023
Control of strong motion by the upper 30 meters
John G. Anderson, Yajie Lee, Yuehua Zeng, Steven Day
-
DOI: 10.1785/bssa0860051559 2023
Topographic site effects and HVSR. A comparison between observations and theory
Francisco J. Chávez-García, Luis R. Sánchez, D. Hatzfeld
-
DOI: 10.1785/bssa0860041161 2023
A geology-based 3D velocity model of the Los Angeles basin sediments
Harold Magistrale, Keith McLaughlin, Steven Day
-
DOI: 10.1785/bssa0860041149 2023
Modeling directivity of heterogeneous earthquake ruptures
Pascal Bernard, André Herrero, Catherine Berge
-
DOI: 10.1785/bssa0860041130 2023
Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength
N. M. Beeler, T. E. Tullis
-
DOI: 10.1785/bssa0860041077 2023
Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps
Miloslav Musil, Axel Plešinger