Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
Chunfeng Zhang, Changyuan Zhai, Meng Zhang, Chi Zhang, Wei Zou, Chunjiang Zhao- Plant Science
- Agronomy and Crop Science
- Food Science
The pulse-width modulation (PWM) variable spray system is the most widely used variable spray system in the world at present, which has the characteristics of a fast response, large flow adjustment range, and good atomization. Recently, the pressure fluctuation and droplet deposition uniformity of the PWM variable spray system caused by the intermittent spray mode of the nozzle have attracted more and more attention. In this study, a method for eliminating the inhomogeneity of ground deposition in low-frequency PWM variable sprays based on a staggered-phase drive mode was proposed, and a PWM variable spray system was built. The experimental results indicated that the pressure fluctuation amplitude upstream of the nozzle of the PWM variable spray system with the staggered-phase drive was reduced by 40.91%, and the dispersion rate of the pressure fluctuation was reduced by 62.78% (the initial pressure was 0.3 MPa, solenoid valve frequency was 5 Hz, and duty cycle was 50%). The PWM control parameters had a significant effect on the upstream pressure fluctuation (initial pressure > duty cycle > frequency). The droplet spectrum relative span of the staggered phased PWM variable spray system decreased by 24.83%, the coefficient of variation of the droplet particle size decreased by 4.40%, the particle size was more uniform, and the atomization effect was improved. The average deposition of droplets in the forward direction driven by the staggered phase was 4.87% greater than that in the same phase, and the variation rate decreased by 20.87%. The average deposition amount increased, and the deposition became more uniform. Staggered-phase spray control could effectively reduce the inhomogeneity of deposition in low-frequency PWM intermittent spraying. This research provides strong technical support for a precision variable spraying effect and droplet drift prevention.