Statistics and 3D Modelling on Soil Analysis by Using Unmanned Aircraft Systems and Laboratory Data for a Low-Cost Precision Agriculture Approach
Alessandro Mei, Alfonso Valerio Ragazzo, Elena Rantica, Giuliano Fontinovo- Engineering (miscellaneous)
- Horticulture
- Food Science
- Agronomy and Crop Science
The aim of this work was to elaborate a new methodology that can allow for the identification of the topsoil homogeneous area (tSHA) distribution along land parcels, supporting farmers in keeping low-cost, sustainable, and light logistic management of precision agriculture (PA) practices. This paper shows the assessment of tSHA variability over two production units (PUs), considering radiometric response (optical camera), physicochemical (texture, pH, electrical conductivity), and statistical and geostatistical data analysis. By using unmanned aircraft systems (UASs) and laboratory analysis, our results revealed that the integration between UAS-RGB and physicochemical data can improve the estimation accuracy of tSHA distribution. Firstly, the UAS-RGB dataset was used to isolate bare soil from the vegetative radiometric contribution. Secondly, starting from statistical approaches (correlation matrices), the highest correlation with UAS-RGB and physicochemical data was stated. Thirdly, by using a geostatistical approach (ordinary cokriging), the map representing the tSHA variability was finally obtained.