DOI: 10.3390/app13158937 ISSN: 2076-3417

Structural Failures of Adobe Buildings during the February 2023 Kahramanmaraş (Türkiye) Earthquakes

Ercan Işık
  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

Türkiye experienced great destruction during the Kahramanmaraş earthquake couple which occurred as Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) on 6 February 2023. The weak structural characteristics and the magnitude of the earthquakes caused more than 50,000 casualties. Significant damage occurred in both urban and rural building stock in 11 different provinces that were primarily affected by the earthquakes. The dominant building stock is masonry structures in the rural areas of the earthquake region. Structural damages at various levels have occurred in adobe masonry structures built using local labours and resources without any engineering service. The main purpose of this study is to examine the failure and collapse mechanisms of adobe structures after Kahramanmaraş earthquakes in detail. First of all, information about both earthquakes was given. The earthquake intensity for all provinces was obtained by using the peak ground acceleration-intensity relation suggested for Türkiye, taking into account the measured PGAs in earthquakes. The observed structural damages were evaluated in terms of earthquake and civil engineering in adobe structures. Damage classification was conducted using European Macro-Seismic Scale (EMS-98) for a total of 100 adobe buildings. Of these structures, 25% were destroyed, 49% were heavily damaged, 15% were damaged moderately, and 11% were damaged slightly. In addition, the rules regarding adobe structures were compared considering the last two earthquake design codes used in Türkiye. In the study, suggestions were also presented to prevent structural damage in the adobe buildings in the earthquake region. Low strength of adobe material, usage of heavy earthen roofs, failure to comply with earthquake-resistant building design principles, and insufficient support of load-bearing walls are the main causes of damage.

More from our Archive