Sami F. Megahid, Ahmed E. Abouelregal, Sameh S. Askar, Marin Marin

Study of Thermoelectric Responses of a Conductive Semi-Solid Surface to Variable Thermal Shock in the Context of the Moore–Gibson–Thompson Thermoelasticity

  • Geometry and Topology
  • Logic
  • Mathematical Physics
  • Algebra and Number Theory
  • Analysis

In this study, the Moore–Gibson–Thompson (MGT) concept of thermal conductivity is applied to a two-dimensional elastic solid in the form of a half-space. This model was constructed using Green and Naghdi’s thermoelastic model to address the infinite velocity problem of heat waves. It has been taken into account that the free surface of the medium is immersed in an electromagnetic field of constant intensity, undergoes thermal shock, and rotates with a uniform angular velocity. The governing equations of a modified version of Ohm’s law account for the impact of temperature gradients and charge densities. By using the method of normal mode analysis, an analytical representation of the studied physical fields was obtained. The effect of rotation and the modulus of modified Ohm’s law on the responses of the field distributions examined is discussed, along with accompanying graphical representations. Other thermoelastic models have been compared with the results of the proposed system when the relaxation time is ignored.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive