The Applications of High-Intensity Focused Ultrasound (HIFU) Ablative Therapy in the Treatment of Primary Breast Cancer: A Systematic Review
Dania Zulkifli, Hanani Abdul Manan, Noorazrul Yahya, Hamzaini Abdul Hamid- Clinical Biochemistry
Background: This study evaluates the role of high-intensity focused ultrasound (HIFU) ablative therapy in treating primary breast cancer. Methods: PubMed and Scopus databases were searched according to the PRISMA guidelines to identify studies from 2002 to November 2022. Eligible studies were selected based on criteria such as experimental study type, the use of HIFU therapy as a treatment for localised breast cancer with objective clinical evaluation, i.e., clinical, radiological, and pathological outcomes. Nine studies were included in this study. Results: Two randomised controlled trials and seven non-randomised clinical trials fulfilled the inclusion criteria. The percentage of patients who achieved complete (100%) coagulation necrosis varied from 17% to 100% across all studies. Eight of the nine studies followed the treat-and-resect protocol in which HIFU-ablated tumours were surgically resected for pathological evaluation. Most breast cancers were single, solitary, and palpable breast tumours. Haematoxylin and eosin stains used for histopathological evaluation showed evidence of coagulation necrosis. Radiological evaluation by MRI showed an absence of contrast enhancement in the HIFU-treated tumour and 1.5 to 2 cm of normal breast tissue, with a thin peripheral rim of enhancement indicative of coagulation necrosis. All studies did not report severe complications, i.e., haemorrhage and infection. Common complications related to HIFU ablation were local mammary oedema, pain, tenderness, and mild to moderate burns. Only one third-degree burn was reported. Generally, the cosmetic outcome was good. The five-year disease-free survival rate was 95%, as reported in two RCTs. Conclusions: HIFU ablation can induce tumour coagulation necrosis in localised breast cancer, with a favourable safety profile and cosmetic outcome. However, there is variable evidence of complete coagulation necrosis in the HIFU-treated tumour. Histopathological evidence of coagulation necrosis has been inconsistent, and there is no reliable radiological modality to assess coagulation necrosis confidently. Further exploration is needed to establish the accurate ablation margin with a reliable radiological modality for treatment and follow-up. HIFU therapy is currently limited to single, palpable breast tumours. More extensive and randomised clinical trials are needed to evaluate HIFU therapy for breast cancer, especially where the tumour is left in situ.