Theoretical Hydrodynamic Modeling of the Fluidized Bed Photoreactor (FBP) Using Computational Fluid Dynamics (CFD): Fluidization Conditions for TiO2-CuO Immobilized on Beach Sand Granules
Ricardo Solano, Miguel Mueses, Adriana Herrera- Computer Science Applications
- General Engineering
- Modeling and Simulation
The flow regime is essential in the photoreactor’s performance in pollutant degradation in the aqueous medium, especially in fluidized systems. Therefore, this study is focused on determining the fluidization conditions of a granular catalyst based on TiO2-CuO nanoparticles (1 wt.% CuO) immobilized on beach sand granules using an FBP photoreactor. COMSOL Multiphysics 6.0 was employed for inlet velocities between 0.1 m/s and 1.0 m/s, mainly from the Reynolds averaged Navier–Stokes (RANS) turbulence model and the Stokes drag law. The results indicated that the average velocities in the annular section are much higher (