Time-optimal multi-qubit gates: Complexity, efficient heuristic and gate-time bounds
Pascal Baßler, Markus Heinrich, Martin Kliesch- Physics and Astronomy (miscellaneous)
- Atomic and Molecular Physics, and Optics
Multi-qubit entangling interactions arise naturally in several quantum computing platforms and promise advantages over traditional two-qubit gates. In particular, a fixed multi-qubit Ising-type interaction together with single-qubit X-gates can be used to synthesize global ZZ-gates (GZZ gates). In this work, we first show that the synthesis of such quantum gates that are time-optimal is NP-hard. Second, we provide explicit constructions of special time-optimal multi-qubit gates. They have constant gate times and can be implemented with linearly many X-gate layers. Third, we develop a heuristic algorithm with polynomial runtime for synthesizing fast multi-qubit gates. Fourth, we derive lower and upper bounds on the optimal GZZ gate-time. Based on explicit constructions of GZZ gates and numerical studies, we conjecture that any GZZ gate can be executed in a time O(