Fang Huang, Enjing Zhang, Yan Lei, Qiong Yan, Chengbin Xue

Tripterine Inhibits Proliferation and Promotes Apoptosis of Keloid Fibroblasts by Targeting ROS/JNK Signaling

  • Rehabilitation
  • Emergency Medicine
  • Surgery

Abstract Keloids are benign skin tumors characterized by excessive fibroblast proliferation and collagen deposition. The current treatment of keloids with hormone drug injection, surgical excision, radiotherapy, physical compression, laser therapy, cryotherapy often have unsatisfactory outcomes. The phytochemical compounds have shown great potential in treating keloids. Tripterine, a natural triterpene derived from the traditional Chinese medicine Thunder God Vine (Tripterygium wilfordii), was previously reported to exhibit an anti-scarring bioactivity in mouse embryonic fibroblast NIH/3T3 cells. Accordingly, our study was dedicated to explore its role in regulating the pathological phenotypes of keloid fibroblasts. Human keloid fibroblasts were treated with tripterine (0–10 μM) for 24 hours. Cell viability, proliferation, migration, apoptosis, and extracellular matrix (ECM) deposition were determined by CCK-8, EdU, wound healing, Transwell, flow cytometry, western blotting, and RT-qPCR assays. The effects of tripterine treatment on reactive oxygen species (ROS) generation and JNK activation in keloid fibroblasts were assessed by DCFH-DA staining and western blotting analysis. Tripterine at the concentrations higher than 4 μM attenuated the viability of human keloid fibroblasts in a dose-dependent manner. Treatment with tripterine (4, 6, and 8 μM) dose-dependently inhibited cell proliferation and migration, promoted cell apoptosis, reduced α-SMA, Col1, and Fn expression, induced ROS production, and enhanced JNK phosphorylation in keloid fibroblasts. Collectively, tripterine ameliorates the pathological characteristics of keloid fibroblasts that are associated with keloidformation and growth by inducing ROS generation and activating JNK signalingpathway.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive