V2G Carbon Accounting and Revenue Allocation: Balancing EV Contributions in Distribution Systems
Bingxuan Yu, Xiang Lei, Ziyun Shao, Linni Jian- Electrical and Electronic Engineering
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing
- Control and Systems Engineering
Accurate carbon emission accounting for electric vehicles (EVs) is particularly important, especially for those participating in the carbon market. However, the participation of numerous EVs in vehicle-to-grid (V2G) scheduling complicates the precise accounting of individual EV emissions. This paper presents a novel approach to carbon accounting and benefits distribution for EVs. It includes a low-carbon dispatch model for a distribution system (DS), aimed at reducing total emissions through strategic EV charging scheduling. Further, an improved carbon emission flow accounting model is proposed to calculate the carbon reduction of EVs before and after low-carbon dispatch. It enables real-time carbon flow tracking during EV charging and discharging, then accurately quantifies the carbon reduction amount. Additionally, it employs the Shapley value method to ensure equitable distribution of carbon revenue, balancing low-carbon operation costs and carbon reduction contributions. A case study based on a 31-node campus distribution network demonstrated that effective scheduling of 1296 EVs can significantly reduce system carbon emissions. This method can accurately account for the carbon emissions of EVs under different charging states, and provides a balanced analysis of EV carbon reduction contributions and costs, advocating for fair revenue allocation.