Whiter and Greener RP-HPLC Method for Simultaneous Determination of Dorzolamide, Brinzolamide, and Timolol Using Isopropanol as a Sustainable Organic Solvent in the Mobile Phase
Sami El Deeb, Khalid Abdelsamad, Maria Kristina Parr- Filtration and Separation
- Analytical Chemistry
A sustainable reversed-phase chromatographic method has been developed and validated for the simultaneous determination of three active pharmaceutical ingredients, dorzolamide, brinzolamide, and timolol, used to treat glaucoma. The eco-friendly solvent isopropanol has been used as an organic mobile phase constituent. According to the Hansen space green solvent selection tool, isopropanol has a G score of 6.5, comparable to ethanol, which has a G score of 6.6. The mobile phase consists of isopropanol: aqueous sodium acetate buffer (0.1 M, pH 4.25) in the ratio of 10:90 (v/v). The flow rate was maintained at 1 mL/min. Dorzolamide and brinzolamide were detected at 254 nm, and timolol was detected at 295 nm. A high-purity silica with a polymeric C18 modification column (150 × 4.6 mm, 5 µm particle size) was used for this separation. The three compounds were eluted within 8 min. The method was validated according to ICH guidelines. The calibration curves were linear in the range of 20–70 µg/mL, 40–140 µg/mL, and 20–70 µg/mL for dorzolamide, brinzolamide, and timolol, respectively. The LODs were found to be 1.61 µg/mL, 1.60 µg/mL, and 3.16 µg/mL for dorzolamide, brinzolamide, and timolol, respectively. Good accuracy and precision were obtained for the three compounds. The greenness and whiteness of the method were indicated using the AGREE, ChlorTox, and RGB12 tools.